Hamming Selection Pruned Sets (HSPS) for Efficient Multi-label Video Classification

نویسندگان

  • Tiong Yew Tang
  • Saadat M. Alhashmi
  • Mohamed Hisham Jaward
چکیده

Videos have become an integral part of our life, from watching movies online to the use of videos in classroom teaching. Existing machine learning techniques are constrained with this scaled up activity because of this huge upsurge in online activity. A lot of research is now focused on reducing the time and accuracy of video classification. Content-Based Video Information Retrieval CBVIR implementation (E.g. Columbia374) is one such approach. We propose a fast Hamming Selection Pruned Sets (HSPS) algorithm that efficiently transforms multi-label video dataset into single-label representation. Thus, multi-label relationship between the labels can be retained for later single label classifier learning stage. Hamming distance (HD) is used to detect similarity between label-sets. HSPS captures new potential label-set relationships that were previously undetected by baseline approach. Experiments show a significant 22.9% dataset building time reduction and consistent accuracy improvement over the baseline method. HSPS also works on general multi-label dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection for Improving Multi-Label Classification using MEKA

The extensive dimensionality in multi-label classification can be overcome by selecting representative words that describe an instance and removing the redundant and insignificant ones. The popular technique of feature selection when applied reduces the size of the dataset and hence speeds up and improves the accuracy of the learning process of classification. This paper looks at the performanc...

متن کامل

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

A New Kernel-Based Classification Algorithm for Multi-label Datasets

With the emergence of rich online content, efficient information retrieval systems are required. Application content includes rich text, speech, still images and videos. This content, either stored or queried, can be assigned to many classes or labels at the same time. This calls for the use of multi-label classification techniques. In this paper, a new kernel-basedmulti-label classification al...

متن کامل

Feature Selection for Multi-label Classification Problems

This paper proposes the use of mutual information for feature selection in multi-label classification, a surprisingly almost not studied problem. A pruned problem transformation method is first applied, transforming the multi-label problem into a single-label one. A greedy feature selection procedure based on multidimensional mutual information is then conducted. Results on three databases clea...

متن کامل

Exploiting Associations between Class Labels in Multi-label Classification

Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012